Дифференциалы - это что такое? Как найти дифференциал функции? §24. Дифференциал функции Дифференциал переменной

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.

Понятие и геометрический смысл дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).

Почему дифференциал можно использовать в приближенных вычислениях?

Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

О разных формах записи дифференциала

Дифференциал функции в точке x и обозначают

Следовательно,

, (2)

поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.

Замечание. Нужно помнить, что если x – исходное значение аргумента, а - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.

Дифференциал функции можно записать в другой форме:

(4)

Свойства дифференциала

В этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.

Дифференциал обладает свойствами, аналогичными свойствам производной:

(С – постоянная величина) (5)

(6)

(7)

(9)

Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .

Применение дифференциала в приближенных вычислениях

Установленное во втором параграфе приближенное равенство

позволяет использовать дифференциал для приближенных вычислений значений функции.

Запишем приближенное равенство более подробно. Так как

Абсолютная и относительная погрешности приближенных вычислений

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

Если точное число неизвестно, то

Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.


24. Приложение дифференциала функции к приближенным вычислениям

Применение дифференциала к приближенным вычислениям

Понятие дифференциала подсказывает, что если какой-Либо процесс по характеру своего изменения близок к линейному, то приращение функции мало отличается от дифференциала. Кроме того, если функция имеет конечную производную в некоторой точке х, то ее приращение и дифференциал также бесконечно малы при , стремящемся к нулю:

Так как дифференцируемая функция непрерывна,

Потому что произведение ограниченной функции на бесконечно малую при DX, стремящемся к нулю, есть функция бесконечно малая.

Более того, эти две бесконечно малые функции при эквивалентны:

Эквивалентность и дает возможность при малых приращениях аргумента приближенно считать

Что может дать эта формула? Пусть в некоторой точке сравнительно просто вычисляются значения и . Тогда в другой точке , отстоящей недалеко от , возможно представление:

Здесь остается открытым вопрос о точности получаемого результата. Это обстоятельство снижает ценность данной формулы приближенного вычисления, но в основном она полезна и широко применяется на практике.

Рассмотрим пример. В прямоугольном треугольнике катеты a=5 м и b=12 м. Какой будет гипотенуза этого треугольника, если катет a уменьшить на 0,2 м (рис. 11.5, a)?

Найдем первоначальную длину гипотенузы:

.

После уменьшения катета a на 0,2 м гипотенуза будет равна (рис. 11.5, a)

Применим теперь формулу (11.16) для приближенного нахождения с в связи с уменьшением катета a, рассматривая функцию вида:

(B=Const);

В обоих случаях мы получили приближенное значение искомой величины. Но в первом случае погрешность возникает в результате приближенных вычислений, а во втором, сравнительно более простом, – В связи с применением приближенной формулы (к ней также может добавиться погрешность, вызванная приближенными вычислениями). Отметим, что при уменьшении катета a На 0,2 м гипотенуза с уменьшилась примерно на 0,08 м, а полученные нами приближенные значения при этом отличаются лишь на 0,001 м.

Рассмотрим другую ситуацию: в этом же треугольнике уменьшим гипотенузу с на 0,2 м, оставив катет b без изменения (рис. 11.5, б). Определим, как в этом случае изменится катет A:

25.Приложение производной к исследованию функций и построению графика

Если на некотором промежутке график функции представляет собой непрерывную линию, иными словами, такую линию, которую можно провести без карандаша от листа бумаги, то такая функция называется непрерывной на этом промежутке. Существуют также функции, которые непрерывными не являются. В качестве примера рассмотрим график функции, которая на промежутках и [с; b] непрерывна, но в точке
х = с разрывна и поэтому на всем отрезке не является непрерывной. Все функции, изучаемые нами в школьном курсе математики, – это функции непрерывные на каждом промежутке, на котором они определены.

Отметим, что если на некотором промежутке функция имеет производную, то на этом промежутке она непрерывна.

Обратное утверждение является неверным. Функция, которая непрерывна на промежутке, может не иметь производной в некоторых точках этого промежутка. Например, функция
у = |log 2 x| непрерывна на промежутке х > 0, но в точке х = 1 не имеет производной, в силу того что в этой точке график функции касательной не имеет.

Рассмотрим построение графиков с помощью производной.

Построить график функции f(x) = x 3 – 2x 2 + x.

1) Эта функция определена при всех х € R.

2) Найдем промежутки монотонности рассматриваемой функции и ее точки экстремума с помощью производной. Производная равна f "(x) = 3x 2 – 4x + 1. Найдем стационарные точки:
3x 2 – 4x + 1 = 0, откуда х 1 = 1/3, х 2 = 1.

Для определения знака производной разложим квадратные трехчлен 3x 2 – 4x + 1 на множители:
f "(x) = 3(х – 1/3)(х – 1). Следовательно, на промежутках х < 1/3 и х > 1 производная положительна; значит, функция возрастает на этих промежутках.

Производная отрицательна при 1/3 < х < 1; следовательно, функция убывает на этом интервале.

Точка х 1 = 1/3 является точкой максимума, так как справа от этой точки функция убывает, а слева – возрастает. В этой точке значение функции равно f (1/3) = (1/3) 3 – 2(1/3) 2 + 1/3 = 4/27.

Точкой минимума является точка х 2 = 1, так как слева от этой точки функция убывает, а справа возрастает; ее значение в этой точке минимума равняется f (1) = 0.

3) При построение графика обычно находят точки пересечения графика с осями координат. Так как f(0) = 0, то график проходит через начало координат. Решая уравнение f(0) = 0, находим точки пересечения графика с осью абсцисс:

x 3 – 2x 2 + x = 0, х(x 2 – 2х + 1) = 0, х(х – 1) 2 = 0, откуда х = 0, х = 1.

4) Для более точного построение графика найдем значения функции еще в двух точках: f(-1/2) = -9/8, f(2) = 2.

5) Используя результаты исследования (пункты 1 – 4), строим график функции у = x 3 – 2x 2 + x.

Для построения графика функции обычно сначала исследуют свойства этой функции с помощью ее производной по схеме, аналогичной схеме при решении задачи 1.

Таким образом, при исследовании свойств функции необходимо найти:

1) область ее определения;

2) производную;

3) стационарные точки;

4) промежутки возрастания и убывания;

5) точки экстремума и значения функции в этих точках.

Результаты исследования удобно записывать в виде таблицы. Затем, используя таблицу, строят график функции. Для более точного построения графика обычно находят точки его пересечения с осями координат и – при необходимости – еще несколько точек графика.

Если же мы сталкиваемся с четной или нечетной функцией, то для построения ее графика достаточно исследовать свойства и построить ее график при х > 0, а затем отразить его симметрично относительно оси ординат (начала координат). Например, анализируя функцию f(x) = х + 4/х, мы приходим к выводу о том, что данная функция нечетная: f(-x) = -х + 4/(-х) = -(х + 4/х) = -f(x). Выполнив все пункты плана, строим график функции при х > 0, а график этой функции при х < 0 получаем посредством симметричного отражения графика при х > 0 относительно начала координат.

Для краткости решения задач на построение графиков функции большую часть рассуждений проводят устно.

Также отметим, что при решении некоторых задач мы можем столкнуться с необходимостью исследования функции не на всей области определения, а только на некотором промежутке, например, если нужно построить график, скажем, функции f(x) = 1 + 2x 2 – x 4 на отрезке [-1; 2].

26.Первообразная функции. Неопределенный интеграл и его свойства

Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называетсянеопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

1.
Производная результата интегрирования равна подынтегральной функции.

2.
Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. , где k – произвольная константа.
Коэффициент можно выносить за знак неопределенного интеграла.

4.
Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

· первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;

· второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Рассмотрим пример.

Найти первообразную функции , значение которой равно единице при х = 1.

Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1. Искомая первообразная примет вид .

Если таблицу производных основных элементарных функций переписать в виде дифференциалов, то из нее по второму свойству неопределенного интеграла можно составить таблицу первообразных.


Похожая информация.


Определение дифференциала

Рассмотрим функцию \(y = f\left(x \right),\) которая является непрерывной в интервале \(\left[ {a,b} \right].\) Предположим, что в некоторой точке \({x_0} \in \left[ {a,b} \right]\) независимая переменная получает приращение \(\Delta x.\) Приращение функции \(\Delta y,\) соответствующее такому изменению аргумента \(\Delta x,\) выражается формулой \[\Delta y = \Delta f\left({{x_0}} \right) = f\left({{x_0} + \Delta x} \right) - f\left({{x_0}} \right).\] Для любой дифференцируемой функции приращение \(\Delta y\) можно представить в виде суммы двух слагаемых: \[\Delta y = A\Delta x + \omicron\left({\Delta x} \right),\] где первый член (т.н. главная часть приращения) линейно зависит от приращения \(\Delta x,\) а второй член имеет более высокий порядок малости относительно \(\Delta x.\) Выражение \(A\Delta x\) называется дифференциалом функции и обозначается символом \(dy\) или \(df\left({{x_0}} \right).\)

Рассмотрим эту идею разбиения приращения функции \(\Delta y\) на две части на простом примере. Пусть задан квадрат со стороной \({x_0} = 1 \,\text{м}\,\) (рисунок \(1\)). Его площадь, очевидно, равна \[{S_0} = x_0^2 = 1 \,\text{м}^2.\] Если сторону квадрата увеличить на \(\Delta x = 1\,\text{см},\) то точное значение площади увеличенного квадрата будет составлять \ т.е. приращение площади \(\Delta S\) равно \[ {\Delta S = S - {S_0} = 1,0201 - 1 = 0,0201\,\text{м}^2 } = {201\,\text{см}^2.} \] Представим теперь это приращение \(\Delta S\) в таком виде: \[\require{cancel} {\Delta S = S - {S_0} = {\left({{x_0} + \Delta x} \right)^2} - x_0^2 } = {\cancel{x_0^2} + 2{x_0}\Delta x + {\left({\Delta x} \right)^2} - \cancel{x_0^2} } = {2{x_0}\Delta x + {\left({\Delta x} \right)^2} } = {A\Delta x + \omicron\left({\Delta x} \right) } = {dy + o\left({\Delta x} \right).} \] Итак, приращение функции \(\Delta S\) состоит из главной части (дифференциала функции), которая пропорциональна \(\Delta x\) и равна \ и члена более высокого порядка малости, в свою очередь, равного \[\omicron\left({\Delta x} \right) = {\left({\Delta x} \right)^2} = {0,01^2} = 0,0001\,\text{м}^2 = 1\,\text{см}^2.\] В сумме оба этих члена составляют полное приращение площади квадрата, равное \(200 + 1 = 201\,\text{см}^2.\)

Заметим, что в данном примере коэффициент \(A\) равен значению производной функции \(S\) в точке \({x_0}:\) \ Оказывается, что для любой дифференцируемой функции справедлива следующая теорема :

Коэффициент \(A\) главной части приращения функции в точке \({x_0}\) равен значению производной \(f"\left({{x_0}} \right)\) в этой точке, т.е. приращение \(\Delta y\) выражается формулой \[ {\Delta y = A\Delta x + \omicron\left({\Delta x} \right) } = {f"\left({{x_0}} \right)\Delta x + \omicron\left({\Delta x} \right).} \] Разделив обе части этого равенства на \(\Delta x \ne 0,\) имеем \[ {\frac{{\Delta y}}{{\Delta x}} = A + \frac{{\omicron\left({\Delta x} \right)}}{{\Delta x}} } = {f"\left({{x_0}} \right) + \frac{{\omicron\left({\Delta x} \right)}}{{\Delta x}}.} \] В пределе при \(\Delta x \to 0\) получаем значение производной в точке \({x_0}:\) \[ {y"\left({{x_0}} \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} } = {A = f"\left({{x_0}} \right).} \] Здесь мы учли, что для малой величины \(\omicron\left({\Delta x} \right)\) более высокого порядка малости, чем \(\Delta x,\) предел равен \[\lim\limits_{\Delta x \to 0} \frac{{\omicron\left({\Delta x} \right)}}{{\Delta x}} = 0.\] Если считать, что дифференциал независимой переменной \(dx\) равен ее приращению \(\Delta x:\) \ то из соотношения \ следует, что \ т.е. производную функции можно представить как отношение двух дифференциалов.

Геометрический смысл дифференциала функции

На рисунке \(2\) схематически показана разбивка приращения функции \(\Delta y\) на главную часть \(A\Delta x\) (дифференциал функции) и член высшего порядка малости \(\omicron\left({\Delta x} \right)\).

Касательная \(MN\), проведенная к кривой функции \(y = f\left(x \right)\) в точке \(M\), как известно, имеет угол наклона \(\alpha\), тангенс которого равен производной: \[\tan \alpha = f"\left({{x_0}} \right).\] При изменении аргумента на \(\Delta x\) касательная получает приращение \(A\Delta x.\) Это линейное приращение, образованное касательной, как раз и является дифференциалом функции. Остальная часть полного приращения \(\Delta y\) (отрезок \(N{M_1}\)) соответствует "нелинейной" добавке с более высоким порядком малости относительно \(\Delta x\).

Свойства дифференциала

Пусть \(u\) и \(v\) − функции переменной \(x\). Дифференциал обладает следующими свойствами:

  1. Постоянный коэффициент можно выносить за знак дифференциала:

    \(d\left({Cu} \right) = Cdu\), где \(C\) − постоянное число.

  2. Дифференциал суммы (разности) функций:

    \(d\left({u \pm v} \right) = du \pm dv.\)

  3. Дифференциал постоянной величины равен нулю:

    \(d\left(C \right) = 0.\)

  4. Дифференциал независимой переменной \(x\) равен ее приращению:

    \(dx = \Delta x.\)

  5. Дифференциал линейной функции равен ее приращению:

    \(d\left({ax + b} \right) = \Delta \left({ax + b} \right) = a\Delta x.\)

  6. Дифференциал произведения двух функций:

    \(d\left({uv} \right) = du \cdot v + u \cdot dv.\)

  7. Дифференциал частного двух функций:

    \(d\left({\large\frac{u}{v}\normalsize} \right) = \large\frac{{du \cdot v - u \cdot dv}}{{{v^2}}}\normalsize.\)

  8. Дифференциал функции равен произведению производной на дифференциал аргумента:

    \(dy = df\left(x \right) = f"\left(x \right)dx.\)

Как видно, дифференциал функции \(dy\) отличается от производной лишь множителем \(dx\). Например, \[ {d\left({{x^n}} \right) = n{x^{n - 1}}dx,}\;\; {d\left({\ln x} \right) = \frac{{dx}}{x},}\;\; {d\left({\sin x} \right) = \cos x dx} \] и так далее.

Инвариантность формы дифференциала

Рассмотрим композицию двух функций \(y = f\left(u \right)\) и \(u = g\left(x \right),\) т.е. сложную функцию \(y = f\left({g\left(x \right)} \right).\) Ее производная определяется выражением \[{y"_x} = {y"_u} \cdot {u"_x},\] где нижний индекс обозначает переменную, по которой производится дифференцирование.

Дифференциал "внешней" функции \(y = f\left(u \right)\) записывается в виде \ Дифференциал "внутренней" функции \(u = g\left(x \right)\) можно представить аналогичным образом: \ Если подставить \(du\) в предыдущую формулу, то получим \ Поскольку \({y"_x} = {y"_u} \cdot {u"_x},\) то \ Видно, что в случае сложной функции мы получили такое же по форме выражение для дифференциала функции, как и в случае "простой" функции. Это свойство называется инвариантностью формы дифференциала .

24.1. Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ"(х)+α, где α→0 при ∆х→0, или ∆у=ƒ"(х) ∆х+α ∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ"(х) ∆х и а ∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ"(х)· ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ"(х) ∆х. (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у"=х"=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ"(х)dх, (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ"(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

<< Пример 24.1

Найти дифференциал функции ƒ(х)=3x 2 -sin(l+2x).

Решение: По формуле dy=ƒ"(х) dx находим

dy=(3х 2 -sin(l+2x))"dx=(6х-2cos(l+2х))dx.

<< Пример 24.2

Найти дифференциал функции

Вычислить dy при х=0, dx=0,1.

Решение:

Подставив х=0 и dx=0.1, получим

24.2. Геометрический смысл дифференциала функции

Выясним геометрический смысл дифференциала.

Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM 1 |=∆у. Из прямоугольного треугольника МАВ имеем:

Но, согласно геометрическому смыслу производной, tga=ƒ"(х). Поэтому АВ=ƒ"(х) ∆х.

Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.

В этом и состоит геометрический смысл дифференциала.

24.3 Основные теоремы о дифференциалах

Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f"(x)dx) и соответствующие теоремы о производных.

Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с"dx=0 dx=0.

Теорема 24.1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:

Докажем, например, вторую формулу. По определению дифференциала имеем:

d(uv)=(uv)" dx=(uv" +vu" )dx=vu" dx+uv" dx=udv+vdu

Теорема 24.2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать

у" х =у" u u" x .

Умножив обе части этого равенства на dx, поучаем у" х dx=у" u u" х dx. Но у" х dx=dy и u" х dx=du. Следовательно, последнее равенство можно переписать так:

dy=у" u du.

Сравнивая формулы dy=у" х dx и dy=у" u du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.

Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.

Формула dy=у" х dx по внешнему виду совпадает с формулой dy=у" u du, но между ними есть принципиальное отличие: в первой формуле х - независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.

С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.

Например: d(cosu)=(cosu)" u du=-sinudu

24.4. Таблица дифференциалов

24.5. Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ"(х) ∆х+α ∆х, где α→0 при ∆х→0, или ∆у=dy+α ∆х. Отбрасывая бесконечно малую α ∆х более высокого порядка, чем ∆х, получаем приближенное равенство

∆у≈dy, (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

<< Пример 24.3

Найти приближенное значение приращения функции у=х 3 -2х+1 при х=2 и ∆х=0,001.

Решение: Применяем формулу (24.3): ∆у≈dy=(х 3 -2х+1)" ∆х=(3х 2 -2) ∆х.

Итак, ∆у» 0,01.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х) 3 -2(х+∆х)+1)-(х 3 -2х+1)=х 3 +3х 2 ∆х+3х (∆х) 2 +(∆х) 3 -2х-2 ∆х+1-х 3 +2х-1=∆х(3х 2 +3х ∆х+(∆х) 2 -2);

Абсолютная погрешность приближения равна

|∆у-dy|=|0,010006-0,011=0,000006.

Подставляя в равенство (24.3) значения ∆у и dy, получим

ƒ(х+∆х)-ƒ(х)≈ƒ"(х)∆х

ƒ(х+∆х)≈ƒ(х)+ƒ"(х) ∆х. (24.4)

Формула (24.4) используется для вычислений приближенных значений функций.

<< Пример 24.4

Вычислить приближенно arctg(1,05).

Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

arctg(x+∆х)≈arctgx+(arctgx)" ∆х,

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М (∆х) 2 , где М - наибольшее значение |ƒ"(х)| на сегменте [х;х+∆х].

<< Пример 24.5

Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

H=g л t 2 /2, g л =1,6 м/с 2 .

Решение: Требуется найти H(10,04). Воспользуемся приближенной формулой (ΔH≈dH)

H(t+∆t)≈H(t)+H"(t) ∆t. При t=10 с и ∆t=dt=0,04 с, H"(t)=g л t, находим

Задача (для самостоятельного решения). Тело массой m=20 кг движется со скоростью ν=10,02 м/с. Вычислить приближенно кинетическую энергию тела

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х - независимая переменная. Тогда ее первый дифференциал dy=ƒ"(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d 2 y или d 2 ƒ(х).

Итак, по определению d 2 y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d 2 y=d(dy)=d(f"(x)dx)=(ƒ"(х)dx)" dx=f"(x)dx dx=f"(x)(dx) 2 т. е.

d 2 y=ƒ"(х)dх 2 . (24.5)

Здесь dx 2 обозначает (dx) 2 .

Аналогично определяется и находится дифференциал третьего порядка

d 3 y=d(d 2 y)=d(ƒ"(х)dx 2)≈f"(x)(dx) 3 .

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: d n y=d(d n-l y)=f (n) (x)(dx) n .

Отсюда находим, что, В частности, при n=1,2,3

соответственно получаем:

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

Отметим, что все приведенные выше формулы справедливы только, если х - независимая переменная. Если же функцию у=ƒ(х), где х - функция от кαкой-mo другой независимой переменной , то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d 2 y=d(f"(x)dx)=d(ƒ"(х))dx+ƒ"(х) d(dx)=ƒ"(х)dx dx+ƒ"(х) d 2 x, т. е.

d 2 y=ƒ"(х)dx 2 +ƒ"(х) d 2 x. (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ"(х) d 2 х.

Ясно, что если х - независимая переменная, то

d 2 x=d(dx)=d(l dx)=dx d(l)=dx 0=0

и формула (24.6) переходит в формулу (24.5).

<< Пример 24.6

Найти d 2 y, если у=е 3х и х - независимая переменная.

Решение: Так как у"=3е 3х, у"=9e 3х, то по формуле (24.5) имеем d 2 y=9e 3x dx 2 .

<< Пример 24.7

Найти d 2 y, если у=х 2 и х=t 3 +1и t- независимая переменная.

Решение: Используем формулу (24.6): так как

у"=2х, у"=2, dx=3t 2 dt, d 2 x=6tdt 2 ,

то d 2 y=2dx 2 +2x 6tdt 2 =2(3t 2 dt) 2 +2(t 3 +1)6tdt 2 =18t 4 dt 2 +12t 4 dt 2 +12tdt 2 =(30t 4 +12t)dt 2

Другое решение: у=х 2 , х=t 3 +1. Следовательно, у=(t 3 +1) 2 . Тогда по формуле (24.5)

d 2 у=у ¢¢ dt 2 ,

d 2 y=(30t 4 +12t)dt 2 .

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y " из уравнения y=f(x) , то можно:

Примеры.


ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Показательно-степенной функцией называется функция вида y = u v , где u=u(x), v=v(x) .

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

Примеры.


ТАБЛИЦА ПРОИЗВОДНЫХ

Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x) , v=v(x) , С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

Примеры.



ПОНЯТИЕ ДИФФЕРЕНЦИАЛА ФУНКЦИИ. СВЯЗЬ МЕЖДУ ДИФФЕРЕНЦИАЛОМ И ПРОИЗВОДНОЙ

Пусть функция y=f(x) дифференцируема на отрезке [a ; b ]. Производная этой функции в некоторой точке х 0 Î [a ; b ] определяется равенством

.

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx , получим:

Δy = f " (x 0)·Δx + a·Δx.

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f " (х 0) ≠ 0) главная часть приращения , линейная относительно Δx , а второе – бесконечно малая величина более высокого порядка, чем Δx . Главную часть приращения функции, т.е. f " (х 0)·Δx называют дифференциалом функции в точке х 0 и обозначают через dy .

Таким образом, если функция y=f(x) имеет производную f " (x ) в точке x , то произведение производной f " (x ) на приращение Δx аргумента называют дифференциалом функции и обозначают:


Найдем дифференциал функции y= x . В этом случае y " = (x )" = 1 и, следовательно, dy =dx x . Таким образом, дифференциал dx независимой переменной x совпадает с ее приращением Δx . Поэтому формулу (1) мы можем записать так:

dy = f "(x )dx

Но из этого соотношения следует, что . Следовательно, производную f "(x ) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции Δy = f (x x ) – f(x) можно представить в виде Δy = A ·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x , то эта функция имеет производную в точке x и f "(x )=А .

Действительно, имеем , и так как при Δx →0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:


ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА

Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox . Дадим независимой переменной x приращение Δx , тогда функция получит приращение Δy = NM 1 . Значениям x x и y y на кривой y = f(x) будет соответствовать точка

M 1 (x x ; y y ).

Из ΔMNT находим NT =MN ·tg α. Т.к. tg α = f "(x ), а MN = Δx , то NT = f "(x )·Δx . Но по определению дифференциала dy =f "(x )·Δx , поэтому dy = NT .

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.


ТЕОРЕМА ОБ ИНВАРИАНТНОСТИ ДИФФЕРЕНЦИАЛА

Ранее мы видели, что если u является независимой переменной, то дифференциал функции y =f "(u ) имеет вид dy = f "(u )du .

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)) . Тогда по правилу дифференцирования сложной функции:

.

Следовательно, по определению

Но g "(x )dx = du , поэтому dy= f"(u)du .

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u) , для которой u=g(x) , имеет тот же вид dy=f"(u)du , какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала .

Пример. . Найти dy .

Учитывая свойство инвариантности дифференциала, находим

.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y 0 =f(x 0 ) и ее производной y 0 " = f "(x 0 ) в точке x 0 . Покажем, как найти значение функции в некоторой близкой точке x .

Как мы уже выяснили приращение функции Δy можно представить в виде суммы Δy =dy +α·Δx , т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy dy или Δy »f "(x 0 )·Δx .

Т.к., по определению, Δy = f (x ) – f (x 0 ), то f(x) – f(x 0) f "(x 0 )·Δx .

Примеры.

ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Пусть функция y=f(x) дифференцируема на некотором отрезке [a ; b ]. Значение производной f "(x ), вообще говоря, зависит от x , т.е. производная f "(x ) представляет собой тоже функцию переменной x . Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y ""или f ""(x ). Итак, y "" = (y ")".

Например, если у = х 5 , то y "= 5x 4 , а y ""= 20x 4 .

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y"""или f"""(x ).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y (n) или f (n) (x ): y (n) = (y (n-1))".

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.