Равны или нет множества и. Множества и операции над множествами. Проблемы объединения и пересечения

Понятие множества относится к аксиоматическим понятиям математики.

Определение . Множество – такой набор, группа, коллекция элементов, которые обладают каким-либо общим для них всех свойством или признаком.

Обозначение: A , B .

Определение . Два множества A и B равны тогда и только тогда, когда они состоят из одних и тех же элементов. A = B .

Запись a ∈ A (a ∉ A) означает, что a является (не является) элементом множества A.

Определение . Множество, не содержащее элементов, называется пустым и обозначается ∅.

Обычно в конкретных случаях элементы всех рассматриваемых множеств берутся из одного, достаточно широкого множества U, которое называется уни- версальным множеством .

Мощность множества обозначается как |M| .
Замечание : для конечных множеств мощность множества – это число элементов.

Определение . Если |A| = |B| , то множества называются равномощными .

Для иллюстрации операций над множествами часто используются диаграммы Эйлера – Венна . Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов, представляющих множества.

Над множествами определены следующие операции:

Объединение А∪В: = {х/х∈А∨х∈В}

Пересечение А∩В: = {х/х∈А&х∈В}

Разность А\В: = {х/х∈А&х∈В}

Дополнение A U \ A: = {x / x U & x ∉ A}

Задача1.1. Дано: а)A,B⊆Z, A = {1;3;4;5;9}, B = {2;4;5;10}. б)A,B⊆R, A = [-3;3), B = (2;10].

Решение.

a) A∩B = {4;5}, A∪B = {1;2;3;4;5;9;10}, A \ B = {1;3;9}, B \ A = {2;10}, B = Z \ B ;

б) A∩B = (2;3), A∪B = [-3;10] , A\B = [-3,2], B\A = ,B Z\B = (-∞,2]∪(10,+∞).


1) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = [-3; 7), B = [-4; 4].

Найти: A∩B, A∪B, A\B, B\A, B .


2) Дано: а) A, B ⊆ Z, A = {3;6;7;10}, B = {2;3;10;12}.

б) A, B ⊆ R, A = .

Найти: A∩B, A∪B, A\B, B\A, B .


3) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = .


4) Дано: а) A, B ⊆ Z, A = {0;4;6;7}, B = {-3;3;7}.

б)A,B ⊆ R, A = [-15;0), B = [-2;1].

Найти: A∩B, A∪B, A\B, B\A, A .


5) Дано: а) A, B ⊆ Z, A = {0;9}, B = {-6;0;3;9}.

б) A, B ⊆ R, A = [-10; 5), B = [-1; 6].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


6) Дано: а)A, B ⊆ Z, A = {0;6;9}, B = {-6;0;3;7}.

б) A, B ⊆ R, A = [-8;3), B = .

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


7) Дано: а)A, B ⊆ Z, A = {-1;0;2;10}, B = {-1;2;9;10}.

б)A, B ⊆ R, A = [-10;9), B = [-5;15].

Найти: A∩B, A∪B, A\B, B\A, B .


8) Дано: а) A,B ⊆ Z, A = {1;2;9;37}, B = {-1;1;9;11;15}.

б) A, B ⊆ R, A = [-8;1), B = [-5;7].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


9) Дано: а) A, B ⊆ Z, A = {-1;0;9;17}, B = {-1;1;9;10;25}.

б) A, B ⊆ R, A = [-4;9), B = [-5;7].

Найти: A∩B, A∪B, A\B, B\A, B .


10) Дано: а)A,B⊆Z, A = {1;7;9;17}, B = {-2;1;9;10;25}.

б) A,B⊆R, A = .

Найти: A ∩ B, A ∪ B, A\B, B\A, A .

Задача1.1. Используя диаграммы Эйлера-Венна доказать тождество:

A\ (B\C) = (A\B) ∪ (A ∩ C).

Решение.

Построим диаграммы Венна.

Левая часть равенства представлена на рисунке а), правая – на рисунке б). Из диаграмм очевидно равенство левой и правой частей данного соотношения.


Задачи для самостоятельного решения

Используя диаграммы Эйлера-Венна доказать тождества:

1) A\(B ∪ C) = (A\B) ∩ (A\C);

2) A ∪ (B\C) = (A ∩ B)\C;

3) A ∪ (B \ C) = (A ∩ B) \ (A ∩ C);

4) (A\B) \C = (A\B) \ (B\C);

5) (A\B) \C = (A\B) ∪ (A∩C);

6) A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

7) (A ∩ B) \ (A ∩ C) = (A ∩ B) \C;

8) A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

9) (A ∪ B) \C = (A\C) ∪ (B\C)

10) A∪ (A ∩ B) = A ∪ B

Задача 1.3. На уроке литературы учитель решил узнать, кто из 40 учеников класса читал книги A, B, C. Результаты опроса оказались таковы: книгу A читали 25 учеников; книгу B читали 22 ученика; книгу C читали 22 ученика; книги A или B читали 33 ученика; книги A или C читали 32 ученика; книги B или C читали 31 ученик; все книги читали 10 учеников. Определите: 1) Сколько учеников прочли только книгу A?

2) Сколько учеников прочли только книгу B?

3) Сколько учеников прочли только книгу C?

4) Сколько учеников прочли только по одной книге?

5) Сколько учеников прочли хотя бы одну книгу?

6) Сколько учеников не прочитали ни одной книги?

Решение.

Пусть U - множество учеников в классе. Тогда

|U| = 40, |A| = 25, |B| = 22, |C| = 22, |A ∪ B| = 33, |A ∪ C| = 32, |B ∪ C| = 31, |A ∩ B ∩ C| = 10

Попробуем проиллюстрировать задачу.

Разобьём множество учеников, прочитавших хотя бы одну книгу, на семь подмножеств k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 , где

k 1 - множество учеников, прочитавших только книгу A;

k 3 - множество учеников, прочитавших только книгу B;

k 7 - множество учеников, прочитавших только книгу C;

k 2 - множество учеников, прочитавших книги A и B и не читавших книгу C;

k 4 - множество учеников, прочитавших книги A и C и не читавших книгу B;

k 6 - множество учеников, прочитавших книги B и C и не читавших книгу A;

k 5 - множество учеников, прочитавших книги A, B и C.

Вычислим мощность каждого из этих подмножеств.

|k 2 | = |A ∩ B|-|A ∩ B ∩ C|; |k 4 | = |A ∩ C|-|A ∩ B ∩ C|;

|k 6 | = |B ∩ C| - |A ∩ B ∩ C|; |k 5 | = |A ∩ B ∩ C|.

Тогда |k 1 | = |A| - |k 2 | - |k 4 | - |k 5 |, |k 3 | = |B| - |k 2 | - |k 6 | - |k 5 |, |k 7 | = |C| - |k 6 | - |k | - |k 5 |.

Найдём |A ∩ B|, |A ∩ C|, |B ∩ C|.

|A ∩ B| = | A| +| B| - |A ∩ B| = 25 + 22 - 33 = 14 ,

|A ∩ C| = |A| + |C| - |A ∩ C| = 25 + 22 - 32 = 15 ,

|B ∩ C| = |B| + |C| - |B ∩ C| = 22 + 22 - 31 = 13 .

Тогда k 1 = 25-4-5-10 = 6; k 3 = 22-4-3-10 = 5; k 7 = 22-5-3-10 = 4;

|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∪ C| .

Из рисунка ясно, что |C| - |(A ∪ B) ∪ C| = |k 7 | = 4, тогда |A ∪ B ∪ C| = 33+4 = 37 – число учеников, прочитавших хотя бы одну книгу.

Так как в классе 40 учеников, то 3 ученика не прочитали ни одной книги.

Ответ:
  1. 6 учеников прочли только книгу A.
  2. 5 учеников прочли только книгу B.
  3. 4 ученика прочли только книгу C.
  4. 15 учеников прочли только по одной книге.
  5. 37 учеников прочли хотя бы одну книгу из A, B, C.
  6. 3 ученика не прочитали ни одной книги.

Задачи для самостоятельного решения

1) В течение недели в кинотеатре шли фильмы A, B, C . Каждый из 40 школьни- ков видел либо все 3 фильма, либо один из трёх. Фильм A видели 13 школьников. Фильм B видели 16 школьников. Фильм C видели 19 школьников. Сколько школьников видели только по одному фильму?

2) В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и английским, 19 – английским и немецким, 15 – русским и немецким, а 10 человек владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

3) В спортивных соревнованиях участвует школьная команда из 20 человек, каждый из которых имеет спортивный разряд по одному или нескольким из трёх видов спорта: лёгкой атлетике, плаванию и гимнастике. Известно, что 12 из них имеют разряды по лёгкой атлетике, 10 – по гимнастике и 5 – по плаванию. Определите количество школьников из этой команды, имеющих разряды по всем видам спорта, если по лёгкой атлетике и плаванию разряды имеют 2 человека, по лёгкой атлетике и гимнастике – 4 человека, по плаванию и гимнастике – 2 человека.

4) Опрос 100 студентов дал следующие результаты о количестве студентов, изучающих различные иностранные языки: испанский – 28; немецкий – 30; французский – 42; испанский и немецкий – 8; испанскии и французский – 10; немецкий и французский – 5; все три языка – 3. Сколько студентов изучает немецкий язык в том и только том случае, если они изучают французский язык? 5) Опрос 100 студентов выявил следующие данные о числе студентов, изучающих различные иностранные языки: только немецкий – 18; немецкий, но не испанский – 23; немецкий и французский – 8; немецкий – 26; французский – 48; французский и испанский – 8; никакого языка – 24. Сколько студентов изучают немецкий и испанский язык?

6) В отчёте об опросе 100 студентов сообщалось, что количество студентов, изучающих различные языки, таково: все три языка – 5; немецкий и испанский – 10; французский и испанский – 8; немецкий и французский – 20; испанский – 30; немецкий – 23; французский – 50. Инспектор, представивший этот отчёт, был уволен. Почему?

7) В международной конференции участвовало 100 человек. Из них 42 владеют французским языком, 28 – английским, 30 – немецким, 10 – французским и английским, 8 – английским и немецким, 5 – французским и немецким, а 3 чело- века владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

8) Студенты 1 курса, изучающие информатику в университете, могут посещать и дополнительные дисциплины. В этом году 25 из них предпочли изучать бухгалтерию, 27 выбрали бизнес, а 12 решили заниматься туризмом. Кроме того, было 20 студентов, слушающих курс бухгалтерии и бизнеса, 5 изучали бухгалтерию и туризм, а 3 – туризм и бизнес. Известно, что никто из студентов не отважился посещать сразу 3 дополнительных курса. Сколько студентов посещали, по крайней мере, 1 дополнительный курс?
9) В олимпиаде по математике для абитуриентов приняло участие 40 учащихся. Им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. Задачу по алгебре решили 20 человек, по геометрии – 18, по тригонометрии – 18 человек. Задачи по алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 8 человек, по геометрии и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека. Сколько учащихся решили толь- ко две задачи?

10) В классе 40 учеников. Из них по русскому языку имеют тройки 19 человек, по математике – 17 человек и по физике – 22 человека. 4 ученика имеют тройки только по одному русскому языку, 4 – только по математике и 11 – только по физике. По русскому, математике и физике имеют тройки 5 учащихся. 7 человек имеют тройки по математике и физике. Сколько учеников имеют тройки по двум из трёх предметов?

Множества, операции над множествами

Определение 1: Под множеством понимается совокупность некоторых объектов (элементов) множества, обладающих общим для них свойством. Обозначаются множества прописными латинскими буквами, элементы – строчными.

https://pandia.ru/text/80/218/images/image002_346.gif" align="left" width="172" height="101 src=">

Определение 3: Пересечением множеств A и B называется множество, состоящее из тех и только тех элементов, каждый из которых принадлежит как множеству A , так и множеству B .

https://pandia.ru/text/80/218/images/image004_243.gif" width="477" height="27">

Множество натуральных чисел замкнуто относительно двух операций: сложения и умножения.

Основные законы сложения и умножения натуральных чисел

Переместительный (коммутативный) закон сложения a + b = b + a Переместительный (коммутативный) закон умножения ab = ba Сочетательный закон сложения (ассоциативный) (a + b )+ c = a +(b + c ) Сочетательный закон умножения (ассоциативный) (ab ) c = a (bc ) Распределительный (дистрибутивный) закон умножения относительно сложения (a + b ) c = ac + bc Множество целых чисел Z. Делимость целых чисел. Признаки делимости

Определение 10: Натуральные числа, им противоположные и {0} называются целыми числами

Z = N +(- N )+{0}

Все законы сложения и умножения натуральных чисел справедливы для целых чисел.

Делимость целых чисел

Целое число a делится на целое число b (нацело), если существует такое https://pandia.ru/text/80/218/images/image009_152.gif" width="137" height="23">

Свойства делимости целых чисел

Делимость рефлексивна Отношение делимости транзитивно Любое целое число всегда делится нацело на 1 и равно этому числу.

Признаки делимости.

На 2 делятся все четные числа. На 3 и 9 делятся числа, у которых сумма цифр делится нацело на 3 и на 9. (Пример: Число 1377 делится на 3 и на 9, так как сумма цифр 1+3+7+7=18 делится нацело на 3 и на 9). На 4 делятся те и только те числа, у которых число, записанное последними двумя цифрами делится нацело на 4. (Пример: Число 23864 делится на 4, так как число 64 делится на 4). На 8 делятся только те числа, у которых число, записанное последними тремя цифрами делится нацело на 8. (Пример: Число 23864 делится на 8, так как число 864 делится на 8). На 5 делятся те и только те числа, которые заканчиваются цифрой 0 или 5. На 10 делятся только те числа, которые заканчиваются цифрой 0.

Деление с остатком

Разделить целое число a на https://pandia.ru/text/80/218/images/image019_89.gif" width="79" height="27">.

Определение 11: Целое число d называется наибольшим общим делителем целых чисел a 1 , a 2 ,…, an , если d – общий делитель этих чисел, d делится на любой общий делитель чисел a 1 , a 2 ,…, an .

Найти НОД(-135; 180).

Ответ: НОД=45.

НОК (a1,a2,…,an) или

Определение 10: Целое число m называется общим кратным чисел a 1 , a 2 ,…, an (целых) не равных нулю, если m делится на каждое из этих чисел a 1 , a 2 ,…, an .

Определение 11: Целое число m называется наименьшим общим кратным (НОК) целых чисел a 1 , a 2 ,…, an , если m является общим кратным этих чисел, и любое общее кратное этих чисел делится нацело на m .

https://pandia.ru/text/80/218/images/image021_88.gif" width="612" height="144">

Число 1 не является ни простым, ни составным числом.

Алгоритм нахождения НОД (алгоритм Евклида ): последний не равный нулю остаток является НОД данных чисел.

Найти НОД(7560;825)

Ответ: НОД=15.

Целые числа a 1 , a 2 ,…, an называются взаимно простыми, если их НОД=1.

https://pandia.ru/text/80/218/images/image023_87.gif" width="161" height="33">, где pi – простые числа, .

Замечание: разложение любого числа n на простые множители называется канонической записью числа n.

Правило нахождения НОД:

Разложить число на простые множители. Составить произведение из всех простых множителей с наименьшим показателем степени. Найти произведение.

Ответ: НОД=4.

Правило нахождения НОК:

Разложить число на простые множители. Составить произведение из всех простых множителей одного числа и недостающих другого. Найти это произведение. Рациональные числа и действия над ними

Определение 12: Под множеством рациональных чисел (Q ) понимают множество обыкновенных несократимых дробей вида https://pandia.ru/text/80/218/images/image026_72.gif" width="84" height="21 src=">.

Множество Q замкнуто относительно всех четырех арифметических операций.

Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то дробь не изменится:

Обыкновенная дробь вида называется десятичной.

Теорема 1 . Несократимую дробь можно обратить в конечную десятичную дробь тогда и только тогда, когда в разложении ее знаменателя на простые множители содержатся только цифры 2 и 5 или их степени или знаменатель равен 1.

https://pandia.ru/text/80/218/images/image030_62.gif" width="612" height="228">

Определение 13: Десятичная дробь называется бесконечной периодической , если у нее цифра или группа цифр после запятой последовательно повторяются.

1,0(77); 1,0(27).

Теорема 2 . Любая бесконечная периодическая дробь является представлением некоторого рационального числа и наоборот.

Правило представления бесконечной периодической дроби в обыкновенную :

из числа, стоящего до второго периода вычесть число, стоящее до первого периода и сделать эту разность числителем, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и 0 столько раз, сколько цифр между запятой и первым периодом.

Ответ: https://pandia.ru/text/80/218/images/image032_56.gif" width="131" height="41">.

R = Q +иррациональные числа .

Множество a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a A , то пишут (a не входит в A , A не содержит a a , b , c

Операции над множествами .

Универсальное множество

Универса́льное мно́жество

Диаграммы Венна. Тождества алгебры множеств и их доказательство.

Диаграмма Венна - схематичное изображение всех возможных пересечений нескольких множеств, показывают математические, теоретико-множественные или логические отношения между множествами.

Тождества и их доказательства.

Для произвольных множеств А, В, и С справедливы следующие соотношения:

1. Коммутативность:

2. Ассоциативность

3. Дистрибутивность объединения относительно пересечения

3’. Дистрибутивность пересечения относительно объединения

4. Законы действия с пустым и универсальным множествами

5. Закон идемпотентности

6. Закон де Моргана

7. Закон поглощения

,

8. Закон склеивания

,

9. Закон Порецкого

,

10. Закон двойного дополнения

Доказать следующее тождество .

Докажем это тождество аналитическим способом (используя равносильности алгебры множеств)

Понятие формального языка

Формальный язык - язык, характеризующийся точными правилами построения выражений и их понимания. Он строится в соответствии с четкими правилами, обеспечивая непротиворечивое, точное и компактное отображение свойств и отношений изучаемой предметной области (моделируемых объектов).

Формальный язык – основа создания программного обеспечения.

ФЯ образуется с помощью исходного набора букв а1, а2, …., а100, с помощью букв образуются слава. Слово в формальном языке – упорядоченный набор букв (Ящерица – 30 букв)

Для операции * слов справедлив ассоциативный закон.

Теория полугрупп и полуколец – основа теории ФЯ

Тавтологии

Тавтология – тождественно-истинное высказывание, которое всегда истинно.

Простейшая тавтология - выражение (A или не A ), представляющее закон исключённого третьего, где вместо A может быть подставлено любое выражение,могущее быть ложным или истинным, например свет включен или не включен , дважды два равно или не равно пяти . Тавтологией являются и законы математической логики выраженные через оператор эквивалентности: и т. п.

Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.

Предикат – высказывание зависящее от какой-то меняющейся переменной величины.

Одноместный предикат – отображение, по которому каждому значению переменой указывается единственное значение 0 или 1 .примеры:

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Отрицанием предиката А(х) называется новый предикат, который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката, х Х является дополнение Т" к множеству Т в множестве Х.

Возьмём высказывания: `` Сократ - человек "", `` Платон - человек "". Оба эти высказывания выражают свойство ``быть человеком"". Таким образом, мы можем рассматривать предикат `` быть человеком "" и говорить, что он выполняется для Сократа и Платона.

25 область определения и область истинности предиката

Множество М, на котором определен предикат P(х) , называется областью определения предиката.

Множество всех элементов х Î М, при которых преди­кат принимает значение «истина», называется множеством истинности предиката Р(х), то есть множество истиннос­ти предиката Р(х) - это множество 1р = {х| х Î М, Р(х) = 1}.

Р(х): «х 2 + 1> 0, xÎ R»; область определения предиката М = R и область истинности – тоже R, т.к. неравенство верно для всех действительных чисел. Таким образом, для данного предиката М = I p . Такие предикаты называются тождественно истинными.

В(х): «х 2 + 1< 0, xÎ R»; область истинности I p =Æ, т.к. не существует действительных чисел, для которых выполняется неравенство. Такие предикаты называются тождественно ложными.

Кванторы. Двухместные предикаты. Определения уравнения, тождества и неравенства.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:

· Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

· Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

1. любое натуральное число кратно 5;

2. каждое натуральное число кратно 5;

3. все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

1. существуют натуральные числа, кратные 5;

2. найдётся натуральное число, кратное 5;

3. хотя бы одно натуральное число кратно 5.

Их формальная запись:

.

· Высказывание означает, что область значений переменной включена в область истинности предиката .

(«При всех значениях (x) утверждение верно»).

· Высказывание означает, что область истинности предиката непуста.

(«Существует (x) при котором утверждение верно»).

Операции над кванторами

Правило отрицания кванторов - применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:

Двухместный предикат – отображение, по которому каждой паре переменных указывается единственное значение 0 или 1.

Предикат является двухместным предикатом, предметной областью которого могут служить любые множества действительных чисел. Высказывание истинно, а высказывание ложно. Если вместо одной из переменных подставить число, то получится одноместный предикат.

Пересечение графов

Пусть G1(V1,E1) и G’2(V2’,E2’) – произвольные графы. Пересечением G1∩G’2 графов G1 и G’2 называется граф с множеством вершин V1∩V’2 с множеством ребер E = E1∩E’2

Свойства

· Пересечение множеств является бинарной операцией на произвольном булеане 2 X ;

коммутативна :

· Операция пересечения множеств транзитивна (ассоциативность) :

· Универсальное множество X является нейтральным элементом операции пересечения множеств:

· Таким образом булеан вместе с операцией пересечения множеств является абелевой группой;

· Операция пересечения множеств идемпотентна:

· Если - пустое множество, то

Остов и коостов графов.

Остов графа - такой его подграф, который является деревом.

Коостов – дополнение остова до графа.

Понятие множества. Операции над множествами. Универсальное множество.

Множество (N- натуральные,Z-целые,Q-рационал, R-действительные) – неопределяемое понятие, это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Простое множество не имеет ни одного элемента. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

«пустое множество» - множество, не содержащее ни одного элемента, его обозначают

Способы задания: табличный, перечислением элементов, графический, рекуррентный, формулой.

Операции над множествами .

Пересечение множеств – множество, состоящее из элементов, которые принадлежат обоим множествам.

Для пересечения множеств справедливы:

· X∩Y=Y∩X - коммутативный закон

· (X∩Y)∩Z = X∩(Y∩Z) = X∩Y∩Z - ассоциативный закон

Объединение множеств – множество, состоящее из элементов, принадлежащих хотя бы одному из множеств.

Для объединенных множеств справедливы:

· XUY = YUX - коммутативный закон

· (XUY) UZ = XU (YUZ) = XUYUZ - ассоциативный закон,

Универсальное множество

Универса́льное мно́жество - множество, содержащее все мыслимые объекты. Универсальное множество единственно.

Универсальное множество – множество, которое содержит все элементы, из которых может состоять другое множество, т.е. полностью содержать все элементы универсального множества. .

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение XU(объединение)I = I.

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

Определение. Множество - это совокупность некоторых объектов, объединенных по какому-либо признаку.

Элементы, составляющие множество, обычно обозначаются малыми латинскими буквами, а само множество - большой латинской буквой. Знак ∈ используется для обозначения принадлежности элемента множеству. Запись a∈A означает, что элемент a принадлежит множеству A. Если некоторый объект x не является элементом множества A, пишут x∉A. Например, если A - это множество четных чисел, то 2∈A, а 1∉A. Множества A и B считаются равными (пишут A = B), если они состоят из одних и тех же элементов.

Если множество содержит конечное число элементов, его называют конечным; в противном случае множество называется бесконечным. Если множество A конечно, символом |A| будет обозначаться число его элементов. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом ∅. Очевидно, |∅|=0.

Пример . Пусть A - множество действительных решений квадратного уравнения x 2 + px + q = 0. Множество A конечно, |A|≤2. Если дискриминант D = p 2 -4q отрицателен, множество A пусто. Множество действительных решений квадратичного неравенства x 2 +px+q≤0 конечно, если D≤0, и бесконечно, если D>0.

Конечное множество может быть задано перечислением всех его элементов,

либо описываются их свойства. Если множество A состоит из элементов x, y, z, пишут A ={x, y, z,}. Например, A = {0, 2, 4, 6, 8} - множество четных десятичных цифр или - множество натуральных чисел, удовлетворяющих условию х + 2 = 1.

Введем используемое в дальнейшем понятие индексированного семейства множеств. Пусть I - некоторое множество, каждому элементу которого i сопоставлено однозначно определенное множество A i . Элементы множества I называют индексами, а совокупность множеств A i называют индексированным семейством множеств и обозначают через (A i) i ∈ I .

Говорят, что множество B является подмножеством множества A и пишут B⊂A, если всякий элемент множества B является элементом множества A. Например, множество натуральных чисел N является подмножеством множества целых чисел Z, а последнее в свою очередь является подмножеством множества рациональных чисел Q, то есть N⊂Z и Z⊂Q, или, короче, N⊂Z⊂Q. Легко видеть, что если B⊂A и A⊂B, то множества A и B состоят из одних и тех же элементов, и, значит, A=B, в противном случае . Наряду с обозначением B⊂A используется также A⊃B, имеющее тот же смысл.

Подмножества множества A, отличные от ∅ и A, называются собственными. Пустое множество и множество А называются несобственными подмножествами множества А. Совокупность всех подмножеств множества А называется его булеаном , или множеством-степенью , и обозначается через Р(А) или 2 А.


Пример . Пусть A = {a, b, c}. Тогда множество 2 A состоит из следующих элементов:

{∅}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.

Если множество A конечно и содержит n элементов, то это множество имеет 2 n подмножеств, то есть |2 A |=2 | A | .

Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера-Венна. Если некоторое универсальное множество, содержащее как подмножества все другие множества, обозначить U и изобразить его в виде всей плоскости, то любое множество можно изобразить в виде части плоскости, т.е. в виде некоторой фигуры, лежащей на плоскости.

Объединением или суммой множеств А и В называют такое множество С, которое состоит из элементов множества А, или элементов множества В, или из элеметов обоих этих множеств, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∪B = {1, 2, 3, 4}.

Пересечением или произведением двух множеств А и В называется такое множество С, которое состоит из элементов, принадлежащих одновременно обоим множествам, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∩B = {2, 3}.

Разностью двух множеств А и В называется множество, состоящее из тех и только тех элементов, которые входят в А и одновременно не входят в В, т.е.

Например, если A = {1, 2, 3} и B ={2, 3, 4}, то A\B = {1}.

Если, в частности, А - подмножество U, то разность U \ A обозначается и называется дополнением множества А.

Симметрической разностью (кольцевой суммой) множеств А и В называется множество , т.е. . Например, если A ={1, 2, 3} и B = {2, 3, 4}, то AΔB = {1, 4}.

Законы алгебры множеств:

1. Коммутативный закон : .

2. Ассоциативный закон : .

3. Дистрибутивный закон :

4. Законы идемпотентности : , в частности

5. Законы поглощения :

6. Законы де Моргана (двойственности) :

7. Закон двойного дополнения :

8. Закон включения :

9. Закон равенства :

Пример 1. Проверим первый из законов де Моргана. Покажем сначала, что. Предположим, что . Тогда x∉A∩B, так что x не принадлежит хотя бы одному из множеств A и B. Таким образом, x∉A или x∉B, то есть или .

Это означает, что. Мы показали, что произвольный элемент множества является элементом множества. Следовательно, . Обратное включение доказывается аналогично. Достаточно повторить все шаги предыдущего рассуждения в обратном порядке.

Пример 2. Доказать включения

Решение. Легче всего это сделать по диаграмме Эйлера-Венна

Из любой пары элементов a и b (не обязательно различных) можно составить новый элемент - упорядоченную пару (a,b). Упорядоченные пары (a,b) и (c,d) считают равными и пишут (a,b) = (c,d), если a = c и b = d. В частности, (a,b) = (b,a) лишь в том случае, когда a=b. Элементы a и b называют координатами упорядоченной пары (a,b) .

Прямым (декартовым) произведением множеств A и B называется множество всех упорядоченных пар (a,b), где a∈A и b∈B. Прямое произведение множеств A и B обозначается через A×B. В соответствии с определением имеем

A×B = {(a,b)| a∈A, b∈B}. Произведение называется декартовым квадратом.

Пример 3. Даны множества А = {1; 2}; B = {2; 3}. Найти .

Решение.

Таким образом, декартово произведение не подчиняется коммутативному закону.

Пример 4. Пусть Из каких элементов состоят множества ?

Решение. Запишем множества А; В; С, перечислив их элементы:

А = {3; 4; 5; 6}; B = {2; 3}; C = {2}. Тогда Подобно парам, можно рассматривать упорядоченные тройки, четверки и, вообще, упорядоченные наборы элементов произвольной длины. Упорядоченный набор элементов длины n обозначается через (a 1 , a 2 , a n). Для таких наборов используется также название кортеж длины n. Допускаются в том числе и кортежи длины 1 - это просто одноэлементные множества. Кортежи (a 1 , a 2 , a n) и (b 1 , b 2 , b n) считаются равными, если a 1 = b 1 , a 2 = b 2 , a n = b n .

По аналогии с произведением двух множеств определим прямое произведение множеств A 1 , A 2 , A n как множество всех кортежей (a 1 , a 2 , a n) таких, что a 1 ∈A 1 , a 2 ∈A 2 , a n ∈A n . Обозначается прямое произведение через A 1 × A 2 × A n .

Понятие прямого произведения может быть обобщено на случай произвольного семейства множеств (A i) i ∈ I . Назовем I-кортежем набор элементов (A i) i ∈ I такой, что a i ∈A i для каждого i∈I. Прямое произведение семейства множеств (A i) i ∈ I - это множество, состоящее из всех I-кортежей. Для обозначения этого множества используется символ Π i ∈ I A i и его разновидности, подобные тем, которые применяются для обозначения пересечения и объединения семейства множеств.

В случае, когда множество A умножается само на себя, произведение называют (декартовой) степенью и используют экспоненциальные обозначения. Так, в соответствии с определением A × A = A 2 , A × A × A = A 3 и т. д. Считается, что A 1 = A и A 0 = ∅.

Непосредственно из определений следует справедливость следующих соотношений (A∪B) × C = (A × C) ∪ (B × C);

(A∩B) × C = (A × C) ∩ (B × C);

(A\B) × C = (A × C)\(B × C).

1. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики. М.:ИНФРА-М, Новосибирск, 2002.

2. Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. Харьков, «Торсинг», 2003.

3. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.:Наука, 1973.

4. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.:ФИЗМАТЛИТ, 2001.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.